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ABSTRACT

This paper deals with predator-prey model havinditp type 11l functional response. The prey pogida is
stage structured consisting of immature and mastmges and the predator population is influencedhieyresource
biomass. Dynamical behaviors such as positivityngedness, stability, bifurcation of the model sixedied analytically
using theory of differential equations. Computenwiations are carried out to prove the analytieauit. It is noted that
influence of resource biomass on the predator diom may lead to the extinction of predator a¢ssér value of maturity

time in comparison to the absence of resource dsma
KEYWORD: Prey-Predator Model, Stability, Stage-Structureydtional Response, Resource Biomass
1. INTRODUCTION

One of the most powerful tools for understanding pinedator prey relationship in ecology is to ustierd the
dynamic relationship between predator and theiy.dvany researchers have studied the system irhd&p¥, 14, 17, 18,
19, and 22]. The Stage structure population wheeertdividual member have a life history that takesm through two
stages, immature and mature have received muchtiatiein mathematical modeling of ecological systémall these
studies, the maturity age is represented by tinteydius the resulting in the system of retardattfional differential
equations. Zang ET. al., [26] in their paper inigeged the behavior of predator -prey populatiothvgrey as structured
population. Song and Chen [20] studied a two sgecisnpetitive stage structured population modeh \wdrvesting for

prey. They obtained stability conditions and thrédlof harvest effort for population survival.

It may be pointed out here, that most of the algiudies are based on the traditional predator-pregels with
either prey or predator stage-structured or batmdture, there are many cases where predator gimpuldynamics is
influenced by the presence of an additional rem(nhich may or may not be a secondary prey). €arsbe illustrated
with the example: stone martins, relative of theaged, are extremely fierce and dangerous predaodspften take prey
like squirrels, pike, voles, hares, etc. [2]. Tligg in forest, especially evergreen ones and speuach of their time up on
trees, jumping from one place to another, climhbipgand down and rarely reaching the ground. Thelg lauden in an
abandoned hole in a tree (resource biomass) arekl@oduce an adverse effect on the growth ofréest This example
shows a relationship between resource biomass aedbfor population, although the predator feedspmy only.
Consequences of moose acting as additional preyWolf—-Caribou system have been described by Bedgpt] and
Bergerudet al. [5]. Freedman and Shukla [9] analyzed a predatey- system where the resource dynamics affects the
predator-prey system. Freedreiral. [8] analyzed a ratio-dependent predator-prey modelenvtier predator population is
influenced by the presence of a resource.
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16 Manju Agarwal & Anuj Kumar

Waryano Sunaryo, et. al., [21] studied an ecoldgiwadel with a tri-trophic food chain composed oflassical
Lotka-Volterra functional response for prey anddater, and a Holling type-lll functional response predator and
super-predator. Agarwal and Pathak [3] studiedefffiect of harvesting on dynamics of prey predatodet with holling

type Il functional response.

It may be noted from the above investigations Hedtavior of resource biomass on predator- preyestgocture
model with Holling type IIl functional responsernst studied yet. Therefore in this paper our fosu® model the effect
of resource biomass on predator prey populatioh tiilling type Il functional response where pregpplation is stage

structured.
2. MATHEMATICAL MODEL

In this paper Holling type Il predator functionaedsponse on predator — prey — resource model vtathes—

structure for prey as the system of following diffietial equations:
X (1) = ax,(t) —px (1) —ae”"x, (t-7),

% (1) = ae " x (t—1)— BXA(t) - %ﬁﬁyﬂ , 2.1)

y(t) = y(t)[—d(r(t)) +Mj,

1+exa(t)
ey __r® )
r(t)'r(t)(l L(y(t»]

X,(t)=¢,(t)=0, —7<t<0 andx, (0) >0, y() > 0, r(0) > 0,

Where x (t) and X, (t) are the densities of immature and mature prey latipas respectivelyy(t) is the density
of the predators anr(t) is the density of the resource biomass.

In mathematical model (2.1) all the parametergpasgtive under the following assumptions.

H1. a is the proportionality constant for immature prepplation to mature prey population,is delay period
at which immature population transfer to matureygyepulation, )/ is death rate of immature prey population gfide
the intra specific interaction.

The termae "X (t —7) describes that immature prey population bornraEt(t— T) and surviving at the time

t and further covert immature to mature prey poparatC, € and f are constants and are defined as the capturiag rat

of predator, efficiency rate of predator on preg annversion rate of predator, respectively.

H2. d(r)=d,-d,+d,e" Isthe death rate of predator, which decreasebeasiensity of resource biomass

increases,

d@)=d,>0,d'(r)<0, r>0.
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L(y)=L,-L,+Le”, Isthe carrying capacity of the resource and drelases asy increases.L (0) is the

carrying capacity of the resource in the absenqeedatory.
Where,
LO)=L,>0, L, 0(0,L,), And
Iyi[nw L(y) = (L, - L)) =L, Gay)>0.

Now for continuity of initial conditions, we reqeir

x; (0) = j)'aeysqom(s)ds,
T (2.2)

The total surviving immature population from thesebved births or-7 <t < 0.

With the help of equation (2.2), the solution oé tfirst equation of system (2.1) can be writtentéarms of

solution for x _(t) as:

X (t) = jae"’“'s) X, (s)ds.
d (2.3)

Equations (2.2) and (2.3) suggest that, matheniigtina information on the past history of, (t) is needed for

the system (2.1), because the propertieg,¢t) can be obtained from (2.2) and (2.3) if we know pioperties of . (t).

Therefore we need only to consider the followingteyn of equations,

X (1) = @€ x, (t=1) = Bxq (1) -%’
/(1) = y()| - ELSONR) (2.4)
y(t) y(t)[ d(r(t))+1+e1xni(t)j

ey _r y,
r(t)"r(t)[l L(y))

X, () =¢,(t)20,-7<t<0,And y(0) > 0, r(0) > 0.

3. BOUNDEDNESS OF SOLUTIONS

Lemma 3.1

-y 202
The setR = {(Xm’ y):0sx <28 0gXm Y T 7 oerg Lo} attract all solutions initiating in
c

Proof:

Consider the following equation,
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(1) = ae X (- 1) - B3 (1) - Sy
o (1) = &7, (1 =1) = B, (1) = S5EEES
We obtain that,

ae”

t) < .
X (t) 7

Now form fist and second equations of system (2ué)pbtain the following

d [x_m+1j L€, (t=1) _ B, _ y(dy—dy)
- < ,

E f c c f

< a’e®  Bx,? y(d,-d)

£c c f
< ale " _ae_wx_m_ y(d, - dl),
£c c f

a’e ™ . _ X y
< - ,(d, - d =
o mln{ae (d, 1)}[ . fj

IN

2,4-2
This implies thatp < Xny Y 0€ " wherey = min{ae'”,(do - dl)} .
c f cBo

Now from the third equation of system (2.4), weabit

: _rm
r(t)sr(t)(l i ]

0

This implies thatlim supr (t) < L,.
t o o0

This completes the proof of the lemma.

4. EQUILIBRIUM POINTS AND STABILITY ANALYSIS:

For this system there exist only five positive éiquium points which are given as:

Eo(0,0,0), E, (%,1,0,0) . E, (X2 Y21 0) . Ey (X, O1s) andED(x:n,y* T )
Where,

ae” ae™ "
X = y X . =

ml ,8 m3 ﬁ

The existence of equilibrium point, (0, 0,0), E, (Xml’ 0, o) and g, (xm3, o,rs) are obvious.

andr3 =L,-

The existence of poink, (x 0) is given by the equations,

m2’y2’
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i} cx., (1) y,(t) _ fx2,(t)
ae’ = Bx,,(t)-—p 22t =0, —d, + —0 =
Fnalt) Xo,(t)e +1 ©l+exi,(t)

From these equations we obtain that the peiptx ,,y,,0) existif following conditions hold,f > d, e, and

ae

B

% .
f-dye

> c(/72 +1)/7 , Wherep)2 =

Now equilibrium pointge "(x - , y“, r”) exist if the system of equations,

o,y _

e T e

_ fxm (1) _
dr(®)+ 1+ex2(t)

1- M _
L(y)

Has a positive solution. From second and third ggos of above equations we get,

X 2= d(L(Y))
" {f-ed(Ly)

=n(y),  (say)-
)}
Using this function in first equation, now we take,

0[] mn-ae

then,

2 21
(). F (0) = B°m(0)- a’e™ < 0,as 7m(0) < a; and

crr(K)

(ii). F(K):[,B+W

2
J 7(K)-a?e? >0,where K is the maximum value oy .

Thus there will existy"” such thatF (yD) =0 fory?0(0 ,K).

Now the sufficient condition for uniqueness Bf (x", y“, r") is given as,

The Dynamic behavior of the equilibrium points ¢enchecked by the Jacobian matrix,
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oo 2cx_y cx?2
(y+A)r _ _ m _ _ m
e Zm%(h%ﬁf (I+ €%7) °
21X,y fx2 .
YE arexy eyt 0
21 1
0 r L(yz) 1- 2r
[Ly)] L(y)

Equilibrium point E, (0,0, 0) is trivial and its characteristic roots are giviey equation A, =qge VT

A, =—d, andA, =1, showing equilibrium pointE;(0,0,0) is unstable in direction ofk —r and stable in the

direction ofy, and hence saddle point.
The characteristic equation f@, (x,,,,0,0) is given as,

2

(ae " -2px, —/])(—do +—(1+f;1x2 )—/1](1—/1) =0

2
Then the characteristic roots of this equationiieny by equationl = ge™"*»" - 28x,, -d X,

0 + 2
1+ex")
2
and1 as-d, + X >0 it is unstable in directiory —I and asRe/ < O the eigenvaluge™ """ —28x < 0

(1+ex’)
so it is stable in directioX, so E, (x,,,,0, 0) is saddle point.
The characteristic equation for the polt(x,,,, Y ,, 0) is given as,

(124 XA+ X, +e{XA+ X })(2-1)=0,

Then the eigenvalue in the directionis 1 So it is unstable in this direction and othersaiglues are given by

the following equation:

(A2+ XA+ X, +e"{X A+ X ,})=0,

Where,
2CX Ly fx_ 2
X = 2 X + m27J2 + _ m2 ,
1 18 m2 (1+elxm22)2 0 (1+ e-lanZ)
—_ 2fCXm23y2
2 (1+ elxm22 )3 1

X, =-ae”, And

_ X5
X4:—aew[do_m]a
m2
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The stability analysis of this point seen by theotlem (4.1), so this point is saddle point whicktable only in
the directionX, —Y,.

Now for the pointE, (xma, 0,r3) characteristic equation is given as,

X2
“rhr _ 9 -A)| -d,+——-A|(1-1)=0
(ae /BX]_ )[ 0 (1+elX12) \J( )
2
Then the eigenvalue in the direction yf is given as-d , + fx—m32 > ( is positive and in the direction of
A+ex.: )

X,z ~I; the eigenvalues are negative, the eigenvalue smoreling to X, direction is given by equation

—_ —(y+A i a’e_‘” H — — YT AT _
A=age """ -2Bx ., putting the value ok _ = it becomed = ae™”" (e 2).

Suppose thaReA = Cthen we calculate the real part of this, we R&d =ae™” € cost Il » 2K (a

contradiction. HencéRe < 0 and in the direction of; eigenvalue is 1, so this point is saddle point.
Characteristics equation for the poEF(XEV yD, I’D) is given as:
9(A,1)=2*+BA*+BA+B,+e"" {BA*+BA+B} =0, (4.1)

WhereB, ,B,,B;,B,,B,and B, given as,

m} o,,0 02
B, = d(r?) -1+ 2rD N Z,BXE, N Zcxm)é2 - X, _
L(y") (1+ex,” Y Itex,

2cx2y? fx2? 2r" 2cx-y" x22
B,=|28x)+—"md N (r%)+—m |+ 1-—— || 28x0 " g (r ) —
(2 gty | 0 () e [ L(yD)J[ﬁm ar et ) G e
L 2foxizy yrEd () Ly
(1+ex,”) (LT

d'(fD) L'(y)y’r™= 2cx;y” 2cxhy" fx.? 2r"
B - 2 O m 2 ] m _d ] m 1_
N (TS { 'me+(1+e1x§2>2j+{ Pt (1+elx53)2j{ e 1+elx53j{ L(yD)J

_[ 1= 2r7 ) 2fex,’y”
L(y) ) @+ex,’ )’

O,,0
B,=-ge” =| -Bx) - —m¥Y |
4 (lgm (1+elxr?]2)2

o 02 0,0 o 02
B,=ae”| -d (rD)+1_ ZFD N X _|= BX- +% —d (I’D)+1— 2r + X, |,
Lly) 1+ex, (1+ex,") L) 1+ex,

and

www.iaset.us edit@iaset.us



22 Manju Agarwal & Anuj Kumar

B, = -ae”” d,(rD),L,(yDZ)yrz =(_ﬁx§ - CX”D“yDDZ Z]d,(rm)l,_,(élm)zymrm
[L'(y)] (L+e, x1?) [L'(y)]

To show the positive equilibriurE“(x", y, ") is locally asymptotical stable for 1= 0, we use the following

theorem [16].

Theorem 4.1:A necessary and sufficient condition f&(x", y”, r”) is locally asymptotically stable fof =0

) The real parts of all roots @A, 0) = O are negative.

(I For all realb andr 20, ¢(ib,7) # 0 , wherd =+/-1.
Theorem 4.2: Then the positive equilibrium poirED(xE],yD, r”) for the system (2.4) is locally asymptotically

stable providing following conditions,

, f
(I) e_Ld (r) > m )

@  ed(r)>1.
Proof: Prove of this theorem is given in two steps a®fo)l
Step-I. Substituting’ =0 in equation (4.1), we obtain,

A+ (B, +B,)A?+(B,+B)A +(B,+B,) =0=¢(1,0), (4.2)(B,+B,)>0,(B,+B,)>0 and

{( Ble+ B4Bz+ BlBS+ B4BQ _(Ba+ BQ} >0 .

Then by Routh-Hurwitz criterion (4.2) has all roat® negative then in the absent of defay(x, y”, r") is

asymptotically stable.
Step-Il. In this step we show tha{A,7) # 0 forA =ib, for realb,
Let b=0 then
@(0,7) =B, + B, # 0, itis hold Il condition.
If b# Othen equation (4.1) can be written as:
—ib® =B’ +iBb+B,+e ™ {-B,b> +iBh+ B} = g(ib, 1),
Now equating real and imaginary parts of this eiguatve obtain the following equations,
-(B,b* - B,)sinbr + bB, cosbr =b®-bB, (4.3)

(B,b? - B;) cosbr + bB, sinbr = b?B,- B, (4.4)
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After squaring and adding the above equations wéhgeequation,

b® +b*(-2B,+B*-B,*)+b?*B,’-2BB.,+ 2B B,—~B.)+ B,>-B/)> 0, as

yr2d (r)L(r) .\
(L]’

2
C f 2r
Bf—Bf—282:3{ﬂxm+i2+ d(r)—#)} + A{ —1] X, CX, Y

(1+ex2) (1+ex;, Ly) | (1+ex?)

2r 2% 2 fx
4 @ ® i ~1]+ 2| —d(ryr
{ Ly (<1+elr€n)H[L(y) ][ (r)+1+elr€n]}

BZ-B2-2B,>0 ,if gd(r) >%2 , condition (i)

iy
1+ex;

B,-B;>0,B,B;-BB,>0 thenp,>-B,>+2(B,B,-B,B,)>0 and

2 _n2_[4._ 21 : _ _ 2cxyyd(r) 283 2
% B“(l L(y))[ 2% (1+e1xi)2+1+qxij

8yr?d ' (r)L'(r) cX, Yy ( 2r lj{ cx,, yd (r) d _ Bx3 ]
Lol {ﬁ X"+(1+elxni)2] L) Navemy P17

then g2 -B2 >0 |if ( CX, yd (r) +Bd (1) x, - B X3, J> o after solving this equation we geﬁld(r)>1,
|

(1+exq) tex,

condition (ii)

SoB?-B,?-2B,>0, B,”-2BB,+2B,B,-BS>0andB,*-B,>>0-

Henceg(ib,7) # 0 for real b. Therefore the unique positive equilibriung“(x?,y r%) is locally
asymptotically stable for all’ = 0 and the delay is harmless in this case.

5. BIFURCATION ANALYSIS

The characteristics equation of the system (2.#hie equilibrium pointe °(x , y“, r”) is given as,
$(A,1)=A°+BA*+ B A+ B+ (BA +BA+Be’ =0.

Let the eigenvalue of equation is in the formAf a(r) +ib(7) and function of . Differentiating (4.1) with

respect t@ , we obtain the following equation

(Mjlz_ 347+ 2)B, + B, . 3AB, + B, T 5.1
dr A(A*+BA?+BA+B;)) (A(BA?+BA+B,) ) 4

If A has only purely imaginary pag(r) =0 andb(r) # 0 thend =ib(r) equation (5.1) become,

Re(ﬂ)_l _(B,’-4b°B,+3b*~-2B,’0°+ BB, (B, o+ BB,- B,b’
dr (b®- bB,)? - (b*B,- B,)? B, %~ (B, B,b?)?
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-1
At T =T, {Reﬁz_)lj } # 0. itis verified by numerically then it is hold treversality conditions.
r

T=r,

The value of delayr =7 is given as,

r =Larcco b*(B; + B,B,) ~b*(B,B,+B.B,+BBJ+BB, +2kT 0 k=0,1,2.... this value
° ") B.2bZ + (B,b% + B,)? b

obtains by the equations (4.3) and (4.4).
6. PERSISTENCE OF THE SYSTEM

Biologically, persistence means the survival of @pulations in future time. Mathematically, petesize of a
system means that strictly positive solutions dohave omega limit points on the boundary of a negative cone. The

persistence of the system (2.4) is give by follapiheorem,

Theorem 6.1: Assuming thar€ ”" > C, the permanence of the solution of the system) (B.4jiven by the

following conditions (6.1), (6.2), (6.3).

Proof: Fromfirst equation of the (2.4),

dxm —-yT 2 me
=ae X, pX, —CX,
dt n A% (1+ ex: )

dx -
dtm >ae"x, - Bx; —cx,

dx _
—m > (ge™" = BX_ —C)X
. ( BXn = C) Xy,

Then jim inf x, > % S0 if @€V >c (6.1)

to oo

Second equation of the system (2.4),

2

=)y
dt 1+ex;
Let imsupy< 7, andliminf x > aeﬁ “Cop

to o0 t o oo m
Then above equation can be written as,
dy S 767, _ y - then we get
dt 1+en’ °
jiminf y> I/ o fn.(@ae” - Of 6.2)
(1+en?)d, [B*+e(ae” -c)*]d,
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Now third equation of system (2.4)
ar _ rl1-—
dt L(y)

dr > r[]__ﬁ] ,after solving, we obtai|1tim infrzL,-L, (6.3)
o L -

a_
7. NUMERICAL SIMULATION AND DISCUSSION

Analytical studies always remain incomplete witheutmerical verification of the results. To facitéathe

interpretation of our mathematical findings by nuiced simulations, we assume
d(r)=d,-d, +d,e", d, 0(0,d,), And consider the set of parameter values as
a=08,=03,y=0.1,r=10,c=4.5,f =10,d,=0.4,d, =0.3,L,=10,L,=2,¢ =0.5. For

the above set of parameter values, the equilibEuif0.1003,0.5297,9.178¢ is obtained. By using these parameters

the following figure is given as,

c
c 011 S 07
i) ]
IS =
=1 o
g 0.1 e
o S
9_>_,‘ 0.09 §
o o
o
0.08
0 200 400 0 200 400
Time Time
10
1%
2 9
5
o 8 1
[
e 7F i
=
o
3 6- B
14

5 . . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500
Time

Figure 1: Variation of Prey Population, Predator Pgulation and Resource Biomass with Respect to Time

10-

Resource Biomass

L L L L L L
0.04 0.06 0.08 0.1 0.12 0.14
Prey Population

Figure 2: Variation of Prey PopulationWith Respect to Resource Biomass at Different Iniéils Points
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Predator Population
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Figure 3: Variation of Prey Population with Respectto Predator Population at Different Initials Points
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Figure 4: Variation of Prey Population with Respectto Time at Different Values of Conversion Rate
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Figure 5: Variation of Predator Population with Regect to Time at Different Values of Conversion Rate
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Figure 6: Variation of Prey Population with Respectto Time at Different Values of Capturing Rate of Pedator
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Figure 7: Variation of Predator Population with Regect to Time at Different Values of Capturing Rateof Predator

0.13 T T T T T T T T T

0.12¢ b

o
o
©
T
L

o
o
)
T
L

Prey Population
o
o
<

——o— delay=15
—— delay=20
—e— delay=25
——delay=31.79 | |

o
o
&

L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
Time

Figure 8: Variation of Prey Population with Different Values of Delay
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Figure 9: Variation of Predator Population with Different Values of Delay

5.5

5 L
4.5 i : -
(]
é’ 4 ! -
£
9o
o »
o 3.5F g
o
3
»
3 3r E
14
e delay=31.79
2.5 e delay=25 b
e  delay=20
2L e delay=15 i
15 . . . . . . . . .
0 50 100 150 200 250 300 350 400 450 500

Time

Figure: 10. Variation of Resource Biomass with Di#rent Values of Delay

Figure 1 shows the behavior of the prey, predadpufation and resource biomass with respect to, timeeobtain
that after some time pre, predator and resourcendss being constant that means they got theirilbduih points. In
Figure 2 discuss the behavior of prey and resobiomass with different initial points of them, hene see that it
converge at their equilibriums point .In same manneFigure 3 we see the variation between the ey predator
population at different initial points, we get thléy converge toward their equilibrium point.

Figure 4 and 5 describe the effect on the preypmadator population with different values of corsien rate of

prey. As conversion rate increase the prey popuiatecrease and predator population increase.

In Figure 6 and 7 we see the variation of prey pradiator population with change of capturing rédteredator,
there is no change of equilibrium point of prey plagion but at initially it increase as capturirager decrease, on the other

hand predator population decrease as the captaiagncrease .

Figure 8 described the behavior of the prey popmnawith different value of delays, as value ofaeincreased
the population of prey does not change at inititilgecreased but in Figure 9 predator populatiecrelase as value of

delay increases but in figure 10 the value of resmbiomass does not change with change of dekdys.v

In the absent of resource biomass behavior ofyktem can be seen as follow by figure and table.
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Figure 11: Variation of Prey Population with Different Values of Delay in Absence of Resource Biomass
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Figure 12: Variation of Prey Population with Different Values of Delay in Absence of Resource Biomass

Table 1: Absence of Resource Biomass

T X Yy

10 0.2022 0.263

15 0.2022 0.1325

20 0.2022| 0.05354

25 0.2022| 0.005567
31.79| 0.111 0.0000

Now from Figure 11-12 we obtained that as the valudelay increases value of prey population dtaly does

not change but as > 25 value of prey slightly decreases, but in predptigpulation decreases as delay value increases.
CONCLUSIONS

In this paper we studied a prey-predator-resouioméiss mathematical model where prey species dageate
Delay of prey is taken as the time of maturationiqueof prey, predator does not interact with imanatprey. After

numerical simulation we obtain following results,

In this paper by numerical simulation for parametealue system is stable in certain conditionse ez see that

as conversion rate of predator is increases prpylption decreases but predator population incesi@sthe same manner

www.iaset.us edit@iaset.us



30 Manju Agarwal & Anuj Kumar

see the effect of capturing rate of Predator oy prel predator population.

Here we see the behavior of the system at valudslaf/, as in paper of Agarwal and Devi [2], thegctibe that
as value of delay changes effect of delay on resobiomass is negligible but in this paper's mosdeluse the holling
type Il functional response as the present of i we see as the value of delay change valuesolrce biomass also

change.
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